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1. Introduction

Systems of D-branes at singularities provide a very interesting setup to realize and study

diverse non-perturbative gauge dynamics phenomena in string theory. In the context of

N = 1 supersymmetric gauge field theories, systems of D3-branes at Calabi-Yau singu-

larities lead to interesting families of tractable 4d strongly coupled conformal field the-

ories, which extend the AdS/CFT correspondence [1 – 3] to theories with reduced (su-

per)symmetry [4 – 6] and enable non-trivial precision tests of the correspondence (see for

instance [7, 8]). Addition of fractional branes leads to families of non-conformal gauge

– 1 –



J
H
E
P
0
5
(
2
0
0
7
)
0
4
7

theories, with intricate RG flows involving cascades of Seiberg dualities [9 – 13], and strong

dynamics effects in the infrared.

For instance, fractional branes associated to complex deformations of the singular

geometry (denoted deformation fractional branes in [12]), correspond to supersymmetric

confinement of one or several gauge factors in the gauge theory [9, 12]. The generic case

of fractional branes associated to obstructed complex deformations (denoted DSB branes

in [12]), corresponds to gauge theories developing a non-perturbative Affleck-Dine-Seiberg

superpotential, which removes the classical supersymmetric vacua [14 – 16]. As shown

in [15] (see also [17, 18]), assuming canonical Kahler potential leads to a runaway potential

for the theory, along a baryonic direction. A natural suggestion to stop this runaway has

been proposed for the particular example of the dP1 theory (the theory on fractional branes

at the complex cone over dP1) in [19]. It was shown that, upon the addition of D7-branes

to the configuration (which introduce massive flavors), the theory develops a meta-stable

minimum (closely related to the Intriligator-Seiberg-Shih (ISS) model [20]), parametrically

long-lived against decay to the runaway regime (see [21] for an alternative suggestion to

stop the runaway, in compact models).

In this paper we show that the appearance of meta-stable minima in gauge theories

on DSB fractional branes, in the presence of additional massless flavors, is much more

general (and possibly valid in full generality). We use the tools of [15] to introduce D7-

branes on general toric singularities, and give masses to the corresponding flavors. Since

quiver gauge theories are rather involved, we develop new techniques to efficiently analyze

the one-loop stability of the meta-stable minima, via the direct computation of Feynman

diagrams. These tools can be used to argue that the results plausibly hold for general

systems of DSB fractional branes at toric singularities. It is very satisfactory to verify the

correspondence between the existence of meta-stable vacua and the geometric property of

having obstructed complex deformations.

The present work thus enlarges the class of string models realizing dynamical su-

persymmetry breaking in meta-stable vacua (see [22 – 26] for other proposed realizations,

and [27 – 29] for models of dynamical supersymmetry breaking in orientifold theories). Al-

though we will not discuss it in the present paper, these results can be applied to the

construction of models of gauge mediation in string theory as in [30] (based on the ad-

ditional tools in [31]), in analogy with [32]. This is another motivation for the present

work.

The paper is organized as follows. In section 2 we review the ISS model, evaluating

one-loop pseudomoduli masses directly in terms of Feynman diagrams. In section 3 we

study the theory of DSB branes at the dP1 and dP2 singularities upon the addition of

flavors, and we find that metastable vacua exist for these theories. In section 4 we extend

this analysis to the general case of DSB branes at toric singularities with massive flavors,

and we illustrate the results by showing the existence of metastable vacua for DSB branes

at some well known families of toric singularities. Finally, the appendix provides some

technical details that we have omitted from the main text in order to improve the legibility.
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2. The ISS model revisited

In this section we review the ISS meta-stable minima in SQCD, and propose that the

analysis of the relevant piece of the one-loop potential (the quadratic terms around the

maximal symmetry point) is most simply carried out by direct evaluation of Feynman

diagrams. This new tool will be most useful in the study of the more involved examples of

quiver gauge theories.

2.1 The ISS metastable minimum

The ISS model [20] (see also [33] for a review of these and other models) is given by N = 1

SU(Nc) theory with Nf flavors, with small masses

Welectric = mTr φφ̃, (2.1)

where φ and φ̃ are the quarks of the theory. The number of colors and flavors are chosen

so as to be in the free magnetic phase:

Nc + 1 ≤ Nf <
3

2
Nc. (2.2)

This condition guarantees that the Seiberg dual is infrared free. This Seiberg dual is the

SU(N) theory (with N = Nf − Nc) with Nf flavors of dual quarks q and q̃ and the meson

M . The dual superpotential is given by rewriting (2.1) in terms of the mesons and adding

the usual coupling between the meson and the dual quarks:

Wmagnetic = h (Tr q̃Mq − µ2Tr M), (2.3)

where h and µ can be expressed in terms of the parameters m and Λ, and some (unknown)

information about the dual Kähler metric.1 It was also argued in [20] that it is possible

to study the supersymmetry breaking minimum in the origin of (dual) field space without

taking into account the gauge dynamics (their main effect in this discussion consists of

restoring supersymmetry dynamically far in field space). In the following we will assume

that this is always the case, and we will forget completely about the gauge dynamics of

the dual.

Once we forget about gauge dynamics, studying the vacua of the dual theory becomes a

matter of solving the F-term equations coming from the superpotential (2.3). The mesonic

F-term equation reads:

−FMij
= hq̃i · qj − hµ2δij = 0, (2.4)

where i and j are flavor indices and the dot denotes color contraction. This has no solution,

since the identity matrix δij has rank Nf while q̃i · qj has rank N = Nf − Nc. Thus this

theory breaks supersymmetry spontaneously at tree level. This mechanism for F-term

supersymmetry breaking is called the rank condition.

1The exact expressions can be found in (5.7) in [20], but we will not need them for our analysis. We just

take all masses in the electric description to be small enough for the analysis of the metastable vacuum to

be reliable.
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The classical scalar potential has a continuous set of minima, but the one-loop potential

lifts all of the non-Goldstone directions, which are usually called pseudomoduli. The usual

approach to study the one-loop stabilization is the computation of the complete one-loop

effective potential over all pseudomoduli space via the Coleman-Weinberg formula [34]:

V =
1

64π2
Tr

(

M4
B log

M2
B

Λ2
−M4

F log
M2

F

Λ2

)

. (2.5)

This approach has the advantage that it allows the determination of the one-loop minimum,

without a priori information about its location, and moreover it provides the full poten-

tial around it, including higher terms. However, it has the disadvantage of requiring the

diagonalization of the mass matrix, which very often does not admit a closed expression,

e.g. for the theories we are interested in.

In fact, we would like to point out that to determine the existence of a meta-stable

minimum there exists a computationally much simpler approach. In our situation, we

have a good ansatz for the location of the one-loop minimum, and are interested just in

the one-loop pseudomoduli masses around such point. This information can be directly

obtained by computing the one-loop masses via the relevant Feynman diagrams. This

technique is extremely economical, and provides results in closed form in full generality,

e.g. for general values of the couplings, etc. The correctness of the original ansatz for the

vacuum can eventually be confirmed by the results of the computation (namely positive

one-loop squared masses, and negligible tadpoles for the classically massive fields)2.

Hence, our strategy to study the one-loop stabilization in this paper is as follows:

• First we choose an ansatz for the classical minimum to become the one-loop vacuum.

It is natural to propose a point of maximal enhanced symmetry (in particular, close

to the origin in the space of vevs for M there exist and R-symmetry, whose breaking

by gauge interactions (via anomalies) is negligible in that region). Hence the natural

candidate for the one-loop minimum is

q = q̃T =

(

µ

0

)

, (2.6)

with the rest of the fields set to 0. This initial ansatz for the one-loop minimum

is eventually confirmed by the positive square masses at one-loop resulting from the

computations described below. In our more general discussion of meta-stable minima

in runaway quiver gauge theories, our ansatz for the one-loop minimum is a direct

generalization of the above (and is similarly eventually confirmed by the one-loop

mass computation).

• Then we expand the field linearly around this vacuum, and identify the set of clas-

sically massless fields. We refer to these as pseudomoduli (with some abuse of lan-

2Since supersymmetry is spontaneously broken the effective potential will get renormalized by quantum

effects, and thus classically massive fields might shift slightly. This appears as a one loop tadpole which can

be encoded as a small shift of µ. This will enter in the two loop computation of the pseudomoduli masses,

which are beyond the scope of the present paper.

– 4 –



J
H
E
P
0
5
(
2
0
0
7
)
0
4
7

guage, since there could be massless fields which are not classically flat directions due

to higher potential terms)

• As a final step we compute one-loop masses for these pseudomoduli by evaluating

their two-point functions via conventional Feynman diagrams, as explained in more

detail in appendix A.1 and illustrated below in several examples.

The ISS model is a simple example where this technique can be illustrated. Considering

the above ansatz for the vacuum, we expand the fields around this point as:

q =

(

µ + 1√
2
(ξ+ + ξ−)

1√
2
(ρ+ + ρ−)

)

, q̃T =

(

µ + 1√
2
(ξ+ − ξ−)

1√
2
(ρ+ − ρ−)

)

, M =

(

Y Z

Z̃T Φ

)

, (2.7)

where we have taken linear combinations of the fields in such a way that the bosonic

mass matrix is diagonal. This will also be convenient in section 2.2, where we discuss the

Goldstone bosons in greater detail.

We now expand the superpotential (2.3) to get

W =
√

2µξ+Y +
1√
2
µZρ+ +

1√
2
µZρ− +

1√
2
µρ+Z̃ − 1√

2
µρ−Z̃

+
1

2
ρ2
+Φ − 1

2
ρ2
−Φ − µ2Φ + . . . , (2.8)

where we have not displayed terms of order three or higher in the fluctuations, unless they

contain Φ, since they are irrelevant for the one loop computation we will perform. Note

also that we have set h = 1 and we have removed the trace (the matricial structure is

easy to restore later on, here we just set Nf = 2 for simplicity). The massless bosonic

fluctuations are given by Re ρ+, Im ρ−, Φ and ξ−. The first two together with Im ξ− are

Goldstone bosons, as explained in section 2.2. Thus the pseudomoduli we are interested in

are given by Φ and Re ξ−. Let us focus on Φ (the case of Re ξ− admits a similar discussion).

In this case the relevant terms in the superpotential simplify further, and just the following

superpotential contributes:

W = µZ
1√
2
(ρ+ + ρ−) + µZ̃

1√
2
(ρ+ − ρ−) +

1

2
ρ2
+Φ − 1

2
ρ2
−Φ − µ2Φ + . . . ,

which we recognize, up to a field redefinition, as the symmetric model of appendix A.2.

We can thus directly read the result

δm2
Φ =

|h|4µ2

8π2
(log 4 − 1). (2.9)

This matches the value given in [20], which was found using the Coleman-Weinberg poten-

tial.

2.2 The Goldstone bosons

One aspect of our technique that merits some additional explanation concerns the Gold-

stone bosons. The one-loop computation of the masses for the fluctuations associated to the
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Im ξ−Im ξ−

Re ξ+

Figure 1: Schematic tadpole contribution to the Im ξ
−

two point function. Both bosons and

fermions run in the loop.

symmetries broken by the vacuum, using just the interactions described in appendix A.1,

leads to a non-vanishing result. This puzzle is however easily solved by realizing that cer-

tain (classically massive) fields have a one-loop tadpole. This leads to a new contribution

to the one-loop Goldstone two-point amplitude, given by the diagram in figure 1. Adding

this contribution the total one-loop mass for the Goldstone bosons is indeed vanishing,

as expected. This tadpole does not affect the computation of the one-loop pseudomoduli

masses (except for Re ξ+, but its mass remains positive) as it is straightforward to check.

The structure of this cancellation can be understood by using the derivation of the

Goldstone theorem for the 1PI effective potential, as we now discuss. The proof can be

found in slightly more detail, together with other proofs, in [35]. Let us denote by V the

1PI effective potential. Invariance of the action under a given symmetry implies that

δV

δφi

∆φi = 0, (2.10)

where we denote by ∆φi the variation of the field φi under the symmetry, which will in

general be a function of all the fields in the theory. Taking the derivative of this equation

with respect to some other field φk

δ2V

δφiδφk

∆φi +
δV

δφi
· δ∆φi

δφk

= 0. (2.11)

Let us consider how this applies to our case. At tree level, there is no tadpole and the

above equation (truncated at tree level) states that for each symmetry generator broken

by the vacuum, the value of ∆φi gives a nonvanishing eigenvector of the mass matrix with

zero eigenvalue. This is the classical version of the Goldstone theorem, which allows the

identification of the Goldstone bosons of the theory.

For instance, in the ISS model in the previous section (for Nf = 2), there are three

global symmetry generators broken at the minimum described around (2.6). The SU(2)×
U(1) symmetry of the potential gets broken down to a U(1)′, which can be understood as a

combination of the original U(1) and the tz generator of SU(2). The Goldstone bosons can

be taken to be the ones associated to the three generators of SU(2), and correspond (for µ

real) to Im ξ−, Im ρ− and Re ρ+, in the parametrization of the fields given by equation (2.7).
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Even in the absence of tree-level tadpoles, there could still be a one-loop tadpole.

When this happens, there should also be a non-trivial contribution to the mass term for

the Goldstone bosons in the one-loop 1PI potential, related to the tadpole by the one-loop

version of (2.11). This relation guarantees that the mass term in the physical (i.e. Wilso-

nian) effective potential, which includes the 1PI contribution, plus those of the diagram in

figure 1, vanishes, as we described above.

In fact, in the ISS example, there is a non-vanishing one-loop tadpole for the real

part of ξ+ (and no tadpole for other fields). The calculation of the tadpole at one loop is

straightforward, and we will only present here the result

iM =
−i|h|4µ3

(4π)2
(2 log 2). (2.12)

The 1PI one-loop contribution to the Goldstone boson mass is also simple to calculate,

giving the result

iM =
−i|h|4µ2

(4π)2
(log 2). (2.13)

Using the variations of the relevant fields under the symmetry generator, e.g. for tz,

∆Re ξ+ = −Im ξ− (2.14)

∆Im ξ− = Re ξ+ + 2µ. (2.15)

we find that the (2.11) is satisfied at one-loop.

〈

δ2V

δφiδφk

∆φi +
δV

δφi
· δ∆φi

δφk

〉

= m2
Im ξ−

· 2µ + (Re ξ+tadpole) · (−1) = 0. (2.16)

A very similar discussion applies to tx and ty.

The above discussion of Goldstone bosons can be similarly carried out in all examples

of this paper. Hence, it will be enough to carry out the computation of the 1PI diagrams

discussed in appendix A.1, and verify that they lead to positive squared masses for all clas-

sically massless fields (with Goldstone bosons rendered massless by the additional diagrams

involving the tadpole).

3. Meta-stable vacua in quiver gauge theories with DSB branes

In this section we show the existence of a meta-stable vacuum in a few examples of gauge

theories on DSB branes, upon the addition of massive flavors. As already discussed in [19],

the choice of fractional branes of DSB kind is crucial in the result. The reason is that in

order to have the ISS structure, and in particular supersymmetry breaking by the rank

condition, one needs a node such that its Seiberg dual satisfies Nf > N , with N = Nf −Nc

with Nc, Nf the number of colors, flavors of that gauge factor. Denoting Nf,0, Nf,1 the

number of massless and massive flavors (namely flavors arising from bi-fundamentals of the

original D3-brane quiver, or introduced by the D7-branes), the condition is equivalent to

Nf,0 < Nc. This is precisely the condition that an ADS superpotential is generated, and is

the prototypical behavior of DSB branes [14 – 16, 18].

– 7 –
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Another important general comment, also discussed in [19], is that theories on DSB

branes generically contain one or more chiral multiplets which do not appear in the super-

potential. Being decoupled, such fields remain as accidental flat directions at one-loop, so

that the one-loop minimum is not isolated. The proper treatment of these flat directions is

beyond the reach of present tools, so they remain an open question. However, it is plausible

that they do not induce a runaway behavior to infinity, since they parametrize a direction

orthogonal to the fields parametrizing the runaway of DSB fractional branes.

3.1 The complex cone over dP1

In this section we describe the most familiar example of quiver gauge theory with DSB

fractional branes, the dP1 theory. In this theory, a non-perturbative superpotential removes

the classical supersymmetric vacua [14 – 16]. Assuming canonical Kähler potential the

theory has a runaway behavior [15, 17]. In this section, we revisit with our techniques the

result in [19] that the addition of massive flavors can induce the appearance of meta-stable

supersymmetry breaking minima, long-lived against tunneling to the runaway regime. As

we show in coming sections, this behavior is prototypical and extends to many other theories

with DSB fractional branes. The example is also representative of the computations for a

general quiver coming from a brane at a toric singularity, and illustrates the usefulness of

the direct Feynman diagram evaluation of one-loop masses.

Consider the dP1 theory, realized on a set of M fractional D3-branes at the complex

cone over dP1. In order to introduce additional flavors, we introduce sets of Nf,1 D7-branes

wrapping non-compact 4-cycles on the geometry and passing through the singular point.

We refer the reader to [19], and also to later sections, for more details on the construction

of the theory, and in particular on the introduction of the D7-branes. Its quiver is shown

in figure 2, and its superpotential is

W = λ(X23X31Y12 − X23Y31X12) + λ′(Q3iQ̃i2X23 + Q2jQ̃j1X12 + Q1kQ̃k3X31)

+m3Q3iQ̃k3δik + m2Q2jQ̃i2δji + m1Q1kQ̃j1δkj , (3.1)

where the subindices denote the groups under which the field is charged. The first line

is the superpotential of the theory of fractional brane, the second line describes 77-73-37

couplings between the flavor branes and the fractional brane, and the last line gives the

flavor masses. Note that there is a massless field, denoted Z12 in [19], that does not appear

in the superpotential. This is one of the decoupled fields mentioned above, and we leave

its treatment as an open question.

We are interested in gauge factors in the free magnetic phase. This is the case for the

SU(3M) gauge factor in the regime

M + 1 ≤ Nf,1 <
5

2
M. (3.2)

To apply Seiberg duality on node 3, we introduce the dual mesons:

M21 = 1
ΛX23X31 ; Nk1 = 1

ΛQ̃k3X31

M ′
21 = 1

ΛX23Y31 ; N ′
k1 = 1

ΛQ̃k3Y31

N2i = 1
ΛX23Q3i ; Φki = 1

ΛQ̃k3Q3i

(3.3)

– 8 –
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1

3

2

i

j

k

SU(3M)

SU(2M) SU(M)

Q3i

Q̃i2

Q2j Q̃j1

Q1k

Q̃k3

Figure 2: Extended quiver diagram for a dP1 theory with flavors, from [19].

and we also replace the electric quarks Q3i, Q̃k3, X23, X31, Y31 by their magnetic duals

Q̃i3, Q3k, X32, X13, Y13. The magnetic superpotential is given by rewriting the confined

fields in terms of the mesons and adding the coupling between the mesons and the dual

quarks,

W = h (M21X13X32 + M ′
21Y13X32 + N2iQ̃i3X32

+Nk1X13Q3k + N ′
k1Y13Q3k + ΦkiQ̃i3Q3k )

+hµ0 (M21Y12 − M ′
21X12 ) + µ′ Q1kNk1 + µ′ N2iQ̃i2

−hµ 2Tr Φ + λ′ Q2jQ̃j1X12 + m2Q2iQ̃i2 + m1Q1iQ̃i1. (3.4)

This is the theory we want to study. In order to simplify the treatment of this example we

will disregard any subleading terms in mi/µ
′, and effectively integrate out Nk1 and N2i by

substituting them by 0. This is not necessary, and indeed the computations in the next

sections are exact. We do it here in order to compare results with [19].

As in the ISS model, this theory breaks supersymmetry via the rank condition. The

fields Q̃i3, Q3k and Φki are the analogs of q, q̃ and M in the ISS case discussed above. This

motivates a vacuum ansatz analogous to (2.6) and the following linear expansion:

Φ =

(

φ00 φ01

φ10 φ11

)

; Q̃i3 =

(

µeθ + Q3,1

Q̃3,2

)

; QT
3i =

(

µe−θ + Q3,1

Q3,2

)

Q̃k1 =

(

Q̃1,1

y

)

; Q2j =

(

Q2,11 x

Q2,21 x′

)

; M21 =

(

M21,1

M21,2

)

Y13 = (Y13) ; XT
12 =

(

X12,1

X12,2

)

; XT
32 =

(

X32,1

X32,2

)

Y T
12 =

(

Y12,1

Y12,2

)

; N ′
k1 =

(

N ′
k1,1

z

)

; M ′
21 = λ′

hµ0

(

M ′
21,1

M ′
21,2

)

X13 = (X13) .

(3.5)

Note that we have chosen to introduce the nonlinear expansion in θ in order to reproduce

– 9 –
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the results found in the literature in their exact form.3 Note also that for the sake of clarity

we have not been explicit about the ranks of the different matrices. They can be easily

worked out (or for this case, looked up in [19]), and we will restrict ourselves to the 2 flavor

case where the matrix structure is trivial. As a last remark, we are not being explicit either

about the definitions of the different couplings in terms of the electric theory. This can

be done easily (and as in the ISS case they involve an unknown coefficient in the Kähler

potential), but in any event, the existence of the meta-stable vacua can be established for

general values of the coefficients in the superpotential. Hence we skip this more detailed

but not very relevant discussion.

The next step consists in expanding the superpotential and identifying the massless

fields. We get the following quadratic contributions to the superpotential:

Wmass = 2hµφ00Q̃3,1 + hµφ01Q̃3,2 + hµφ10Q3,2

+hµ0M21,1Y12,1 + hµ0M21,2Y12,2 − λ′M ′
21,1X12,1 − λ′M ′

21,2X12,2

+hµN ′
k1,1Y13 − h1µQ̃1,1X13 − h2µQ2,11X32,1 − h2µQ2,21X32,2. (3.6)

The fields massless at tree level are x, x′, y, z, φ11, θ, Q3,2 and Q̃3,2. Three of these

are Goldstone bosons as described in the previous section. For real µ they are Im θ,

Re (Q̃3,2 + Q3,2) and Im (Q̃3,2 − Q3,2). We now show that all other classically massless

fields get masses at one loop (with positive squared masses).

As a first step towards finding the one-loop correction, notice that the supersymmetry

breaking mechanism is extremely similar to the one in the ISS model before, in particular

it comes only from the following couplings in the superpotential:

Wrank = hQ3,2Q̃3,2φ11 − hµ2φ11 + . . . (3.7)

This breaks the spectrum degeneracy in the multiplets Q3,2 and Q̃3,2 at tree level, so we

refer to them as the fields with broken supersymmetry.

Let us compute now the correction for the mass of x, for example. For the one-

loop computation we just need the cubic terms involving one pseudomodulus and at least

one of the broken supersymmetry fields, and any quadratic term involving fields present

in the previous set of couplings. From the complete expansion one finds the following

supersymmetry breaking sector:

Wsymm. = hφ11Q3,2Q̃3,2 + hµφ01Q̃3,2 + hµφ10Q3,2 − hµ2φ11. (3.8)

The only cubic term involving the pseudomodulus x and the broken supersymmetry fields

is

Wcubic = −h2 x Q̃3,2X32,1, (3.9)

and there is a quadratic term involving the field X32,1

Wmass coupling = −h2µQ2,11X32,1. (3.10)

3A linear expansion would lead to identical conclusions concerning the existence of the meta-stable

vacua, but to one-loop masses not directly amenable to comparison with results in the literature.
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Assembling the three previous equations, the resulting superpotential corresponds to the

asymmetric model in appendix A.2, so we can directly obtain the one-loop mass for x:

δm2
x =

1

16π2
|h|4µ2C

( |h2|2
|h|2

)

. (3.11)

Proceeding in a similar way, the one-loop masses for φ11, x′, y and z are:

δm2
φ11

=
1

8π2
|h|4µ2(log 4 − 1)

δm2
x′ =

1

16π2
|h|4µ2C

( |h2|2
|h|2

)

,

δm2
y =

1

16π2
|h|4µ2C

( |h1|2
|h|2

)

δm2
z =

1

16π2
|h|4µ2(log 4 − 1). (3.12)

There is just one pseudomodulus left, Re θ, which is qualitatively different to the others.

With similar reasoning, one concludes that it is necessary to study a superpotential of the

form

W = h(Xφ1φ2 + µeθφ1φ3 + µe−θφ2φ4 − µ2X). (3.13)

Due to the non-linear parametrization, the expansion in θ shows that there is a term

quadratic in θ which contributes to the one-loop mass via a vertex with two bosons and

two fermions, the relevant diagram is shown in figure 16d. The result is a vanishing mass

for Im θ, as expected for a Goldstone boson (the one-loop tadpole vanishes in this case),

and a non-vanishing mass for Re θ

δm2
Re θ =

1

4π2
|h|4µ4(log 4 − 1). (3.14)

We conclude by mentioning that all squared masses are positive, thus confirming that

the proposed point in field space is the one-loop minimum. As shown in [19], this minimum

is parametrically long-lived against tunneling to the runaway regime.

3.2 Additional examples: The dP2 case

Let us apply these techniques to consider new examples. In this section we consider a DSB

fractional brane in the complex cone over dP2, which provides another quiver theory with

runaway behavior [15]. The quiver diagram for dP2 is given in figure 3, with superpotential

W = X34X45X53 − X53Y31X15 − X34X42Y23 + Y23X31X15X52

+X42X23Y31X14 − X23X31X14X45X52 (3.15)

We consider a set of M DSB fractional branes, corresponding to choosing ranks

(M, 0,M, 0, 2M) for the corresponding gauge factors. The resulting quiver is shown in

figure 4, with superpotential

W = −λX53Y31X15 (3.16)

– 11 –



J
H
E
P
0
5
(
2
0
0
7
)
0
4
7

1 23

5

4

Figure 3: Quiver diagram for the dP2 theory.
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31

5

Figure 4: Quiver diagram for the dP2 theory with M DSB fractional branes.

Following [19] and appendix B, one can introduce D7-branes leading to D3-D7 open

strings providing (possibly massive) flavors for all gauge factors, and having cubic couplings

with diverse D3-D3 bifundamental chiral multiplets. We obtain the quiver in figure 5.

Adding the cubic 33-37-73 coupling superpotential, and the flavor masses, the complete

superpotential reads

Wtotal = −λX53Y31X15 − λ′(Q1iQ̃i3Y31 + Q3jQ̃j5X53 + Q5kQ̃k1X15)

+m1Q1iQ̃k1 + m2Q3jQ̃i3 + m5Q5kQ̃j5 (3.17)

where 1, 2, 3 are the gauge group indices and i, j, k are the flavor indices.

We consider the U(2M) node in the free magnetic phase, namely

M + 1 ≤ Nf,1 < 2M (3.18)
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Figure 5: Quiver for the dP2 theory with M fractional branes and flavors.

After Seiberg Duality the dual gauge factor is SU(N) with N = Nf,1 − M and dynamical

scale Λ. To get the matter content in the dual, we replace the microscopic flavors Q5k, Q̃j5,

X53, X15 by the dual flavors Q̃k5, Q5j , X35, X51 respectively. We also have the mesons

related to the fields in the electric theory by

M1k =
1

Λ
X15Q5K ; Ñj3 =

1

Λ
Q̃j5X53

M13 =
1

Λ
X15X53 ; Φ̃jk =

1

Λ
Q̃j5Q5k

(3.19)

There is a cubic superpotential coupling the mesons and the dual flavors

Wmes. = h (M1kQ̃k5X51 + M13X35X51 + Ñj3X35Q5j + Φ̃jkQ̃k5Q5j ) (3.20)

where h = Λ/Λ̂ with Λ̂ given by Λ
3Nc−Nf

elect Λ3(Nf−Nc)−Nf = Λ̂Nf , where Λelect is the

dynamical scale of the electric theory. Writing the classical superpotential terms of the

new fields gives

Wclas. = −hµ0 M13Y31 + λ′ Q1iQ̃i3Y31 + µ′ Ñj3Q3j + µ′ M1kQ̃k1

+ m1Q1iQ̃k1 + m3Q3jQ̃i3 − hµ 2Tr Φ (3.21)

where µ0 = λΛ, µ′ = λ′Λ, and µ 2 = −m5Λ̂. So the complete superpotential in the Seiberg

dual is

Wdual = −hµ0 M13Y31 + λ′ Q1iQ̃i3Y31 + µ′ Ñj3Q3j + µ′ M1kQ̃k1

+ m1Q1iQ̃k1 + m3Q3jQ̃i3 − hµ 2Tr Φ

+ h (M1kQ̃k5X51 + M13X35X51 + Ñj3X35Q5j + Φ̃jkQ̃k5Q5j ) (3.22)

This superpotential has a sector completely analogous to the ISS model, triggering

supersymmetry breaking by the rank condition. This suggests the following ansatz for the

point to become the one-loop vacuum

Q5k = Q̃T
5k =

(

µ

0

)

, (3.23)
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with all other vevs set to zero. Following our technique as explained above, we expand

fields at linear order around this point. Focusing on Nf,1 = 2 and Nc = 1 for simplicity

(the general case can be easily recovered), we have

Q̃k5 =

(

µ + δQ̃5,1

δQ̃5,2

)

; Q5k = (µ + δQ5,1 ; δQ5,2) ; Φ =

(

δΦ0,0 δΦ0,1

δΦ1,0 δΦ1,1

)

Q̃k1 =

(

δQ̃1,1

δQ̃1,2

)

; Q1i = (δQ1,1 ; δQ1,2) ; Q̃i3 =

(

δQ̃3,1

δQ̃3,2

)

; Q3j = (δQ3,1 ; δQ3,2)

Ñj3 =

(

δÑ3,1

δÑ3,2

)

; M1k = (δM1,1 ; δM1,2) ; M13 = δM13 ; Y31 = δY31 ; X51 = δX51

X35 = δX35

(3.24)

Inserting this into equation (3.22) gives

Wdual = −hµ0 δM13δY31 + λ′ δQ1,1δQ̃3,1δY31 + λ′ δQ1,2δQ̃3,2δY31

+ µ′ δÑ3,1δQ3,1 + µ′ δÑ3,2δQ3,2 + µ′ δM1,1δQ̃1,1 + µ′ δM1,2δQ̃1,2

+ m1δQ1,1δQ̃1,1 + m1δQ1,2δQ̃1,2 + m3δQ3,1δQ̃3,1 + m3δQ3,2δQ̃3,2

−hµ 2δΦ11 + h (µδM1,1δX51 + δM1,1δQ̃5,1δX51 + δM1,2δQ̃5,2δX51

+ δM13δX35δX51 + µδX35δÑ3,1 + δX35δÑ3,1δQ5,1 + δX35δÑ3,2δQ5,2

+µδQ̃5,1δΦ00 + µδQ5,1δΦ00 + δQ5,1δQ̃5,1δΦ00 + µδΦ01δQ̃5,2

+ δQ5,1δΦ01δQ̃5,2 + µδΦ10δQ5,2 + δQ̃5,1δΦ10δQ5,2 + δQ̃5,2δΦ11δQ5,2).

We now need to identify the pseudomoduli, in other words the massless fluctuations at tree

level. We focus then just on the quadratic terms in the superpotential

Wmass = −hµ0 δM13δY31 + µ′ δÑ3,1δQ3,1 + m3δQ3,1δQ̃3,1 + hµδX35δÑ3,1

+ µ′ δÑ3,2δQ3,2 + m3δQ3,2δQ̃3,2 + µ′ δM1,1δQ̃1,1 + m1δQ1,1δQ̃1,1

+hµδM1,1δX51 + µ′ δM1,2δQ̃1,2 + m1δQ1,2δQ̃1,2 + hµδQ̃5,1δΦ00

+ hµδQ5,1δΦ00 + hµδΦ01δQ̃5,2 + µδΦ10δQ5,2. (3.25)

We have displayed the superpotential so that fields mixing at the quadratic level appear

in the same line. In order to identify the pseudomoduli we have to diagonalize4 these

fields. Note that the structure of the mass terms corresponds to the one in appendix C, in

particular around equation (C.9). From the analysis performed there we know that upon

diagonalization, fields mixing in groups of four (i.e., three mixing terms in the superpo-

tential, for example the δM1,1, δQ̃1,1, δQ1,1, δX51 mixing) get nonzero masses, while fields

mixing in groups of three (two mixing terms in the superpotential, for example δM1,2, δQ̃1,2

and δQ1,2) give rise to two massive perturbations and a massless one, a pseudomodulus.

4As a technical remark, let us note that it is possible to set all the mass terms to be real by an appropriate

redefinition of the fields, so we are diagonalizing a real symmetric matrix.
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We then just need to study the fate of the pseudomoduli. From the analysis in appendix C,

the pseudomoduli coming from the mixing terms are

Y1 = m3δÑ3,2 − µ′δQ̃3,2 ,

Y2 = m1δM1,2 − µ′δQ1,2 ,

Y3 = hµ(δQ5,1 − δQ̃5,1) . (3.26)

In order to continue the analysis, one just needs to change basis to the diagonal fields and

notice that the one loop contributions to the pseudomoduli are described again by the

asymmetric model of appendix A.2, so they receive positive definite contributions. The

exact analytic expressions can be easily found with the help of some computer algebra

program, but we omit them here since they are quite unwieldy.

4. The general case

In the previous section we showed that several examples of quiver gauge theories on DSB

fractional branes have metastable vacua once additional flavors are included. In this section

we generalize the arguments for general DSB branes. We will show how to add D7-branes

in a specific manner so as to generate the appropriate cubic flavor couplings and mass

terms. Once this is achieved, we describe the structure of the Seiberg dual theory. The

results of our analysis show that, with the specified configuration of D7-branes, the de-

termination of metastability is greatly simplified and only involves looking at the original

superpotential. Thus, although we do not prove that DSB branes on arbitrary singularities

generate metastable vacua, we show how one can determine the existence of metastability

in a very simple and systematic manner. Using this analysis we show further examples of

metastable vacua on systems of DSB branes.

4.1 The general argument

4.1.1 Construction of the flavored theories

Consider a general quiver gauge theory arising from branes at singularities. As we have

argued previously, we focus on DSB branes, so that there is a gauge factor satisfying

Nf,0 < Nc, which can lead to supersymmetry breaking by the rank condition in its Seiberg

dual. To make the general analysis more concrete, let us consider a quiver like that in

figure 6, which is characteristic enough, and let us assume that the gauge factor to be

dualized corresponds to node 2. In what follows we analyze the structure of the fields and

couplings in the Seiberg dual, and reduce the problem of studying the meta-stability of the

theory with flavors to analyzing the structure of the theory in the absence of flavors.

The first step is the introduction of flavors in the theory. As discussed in [19], for

any bi-fundamental Xab of the D3-brane quiver gauge theory there exist a supersymmetric

D7-brane leading to flavors Qbi, Q̃ia in the fundamental (antifundamental) of the bth (ath)

gauge factor. There is also a cubic coupling XabQbiQ̃ia. Let us now specify a concrete set

of D7-branes to introduce flavors in our quiver gauge theory. Consider a superpotential

coupling of the D3-brane quiver gauge theory, involving fields charged under the node
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Figure 6: Quiver diagram used to illustrate general results. It does not correspond to any geometry

in particular.

to be dualized. This corresponds to a loop in the quiver, involving node 2, for instance

X32X21X14Y43 in figure 6. For any bi-fundamental chiral multiplet in this coupling, we

introduce a set of Nf,1 of the corresponding D7-brane. This leads to a set of flavors for the

different gauge factors, in a way consistent with anomaly cancellation, such as that shown

in figure 7. The description of this system of D7-branes in terms of dimer diagrams is

carried out in appendix B. The cubic couplings described above lead to the superpotential

terms5

Wflavor = λ′ (X32Q2bQb3 + X21Q1aQa2 + X14Q4dQd1 + Y43Q3cQc4 ) (4.1)

Finally, we introduce mass terms for all flavors of all involved gauge factors:

Wmass = m2Qa2Q2b + m3Qb3Q3c + m4Qc4Q4d + m1Qd1Q1a (4.2)

These mass terms break the flavor group into a diagonal subgroup.

4.1.2 Seiberg duality and one-loop masses

We consider introducing a number of massive flavors such that node 2 is in the free magnetic

phase, and consider its Seiberg dual. The only relevant fields in this case are those charged

under gauge factor 2, as shown if figure 8. The Seiberg dual gives us figure 9 where the

M ’s are mesons with indices in the gauge groups, R’s and S’s are mesons with only one

index in the flavor group, and Xab is a meson with both indices in the flavor groups. The

original cubic superpotential and flavor mass superpotentials become

Wflavor dual = λ′ (S1
3bQb3 + R1

a1Q1a + X14Q4dQd1 + Y43Q3cQc4 )

Wmass dual = m2Xab + m3Qb3Q3c + m4Qc4Q4d + m1Qd1Q1a (4.3)

5Here we assume the same coupling, but the conclusions hold for arbitrary non-zero couplings.
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Figure 7: Quiver diagram with flavors. White nodes denote flavor groups.
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X21 Y21

X32
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Q2b

Figure 8: Relevant part of quiver before Seiberg duality.

In addition we have the extra meson superpotential

Wmesons = h (XabQ̃b2Q̃2a + R1
a1X̃12Q̃2a + R2

a1Ỹ12Q̃2a + S1
3bQ̃b2X̃23 + S2

3bQ̃b2Ỹ23

+ S3
3bQ̃b2Z̃23 + M1

31X̃12X̃23 + M2
31X̃12Ỹ23 + M3

31X̃12Z̃23

+ M4
31Ỹ12X̃23 + M5

31Ỹ12Ỹ23 + M6
31Ỹ12Z̃23 ). (4.4)
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Figure 9: Relevant part of the quiver after Seiberg duality on node 2.

The crucial point is that we always obtain terms of the kind underlined above, namely a

piece of the superpotential reading m2Xab+hXabQ̃b2Q̃2a. This leads to tree level supersym-

metry breaking by the rank condition, as announced. Moreover the superpotential fits in

the structure of the generalized asymmetric O’Raifeartaigh model studied in appendix A.2,

with Xab, Q̃b2, Q̃2a corresponding to X, φ1, φ2 respectively. The multiplets Q̃b2 and Q̃2a

are split at tree level, and Xab is massive at 1-loop. From our study of the generalized

asymmetric case, any field which has a cubic coupling to the supersymmetry breaking

fields Q̃b2 or Q̃2a is one-loop massive as well. Using the general structure of Wmesons, a

little thought shows that all dual quarks with no flavor index (e.g. X̃ , Ỹ ) and all mesons

with one flavor index (e.g. R or S) couple to the supersymmetry breaking fields.

Thus they all get one-loop masses (with positive squared mass). Finally, the flavors of

other gauge factors (e.g. Qb3) are massive at tree level from Wmass.

The bottom line is that the only fields which do not get mass from these interactions

are the mesons with no flavor index, and the bi-fundamentals which do not get dualized

(uncharged under node 2). All these fields are related to the theory in the absence of extra

flavors, so they can be already stabilized at tree-level from the original superpotential. So,

the criteria for a metastable vacua is that the original theory, in the absence of flavors

leads, after dualization of the node with Nf < Nc, to masses for all these fields (or more

mildly that they correspond to directions stabilized by mass terms, or perhaps higher order

superpotential terms).

For example, if we apply this criteria to the dP2 case studied previously, the original

superpotential for the fractional DSB brane is

W = −λX53Y31X15 (4.5)
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Figure 10: Quiver diagram for the dP3 theory with a DSB fractional brane.

so after dualization we get

W = −λM13Y31 (4.6)

which makes these fields massive. Hence this fractional brane, after adding the D7-branes

in the appropriate configuration, will generate a metastable vacua will all moduli stabilized.

The argument is completely general, and leads to an enormous simplification in the

study of the theories. In the next section we describe several examples. A more rigorous

and elaborate proof is provided in the appendix where we take into account the matricial

structure, and show that all fields, except for Goldstone bosons, get positive squared masses

at tree-level or at one-loop.

4.2 Additional examples

4.2.1 The dP3 case

Let us consider the complex cone over dP3, and introduce fractional DSB branes of the

kind considered in [15]. The quiver is shown in figure 10 and the superpotential is

W = X13X35X51 (4.7)

Node 1 has Nf < Nc so upon addition of massive flavors and dualization will lead to

supersymmetry breaking by the rank condition. Following the procedure of the previous

section, we add Nf,1 flavors coupling to the bi-fundamentals X13, X35 and X51. Node 1

is in the free magnetic phase for P + 1 ≤ Nf,1 < 3
2P + 1

2 . Dualizing node 1, the above

superpotential becomes

W = X35M53 (4.8)

where M53 is the meson X51X13. So, following the results of the previous section, we can

conclude that this DSB fractional brane generates a metastable vacua with all pseudomod-

uli lifted.
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Figure 11: Quiver diagram for the dP4 theory with a DSB fractional branes.

4.2.2 Phase 1 of PdP4

Let us consider the PdP4 theory, and introduce the DSB fractional brane of the kind

considered in [15]. The quiver is shown in figure 11 .

The superpotential is

W = −X25X51X12 (4.9)

Node 1 has Nf < Nc and will lead to supersymmetry breaking by the rank condition in the

dual. Following the procedure of the previous section, we add Nf,1 flavors coupling to the

bi-fundamentals X12, X25 and X51. Node 1 is in the free magnetic phase for P + 2 ≤
M + Nf,1 < 3

2 (M + P ). Dualizing node 1, the above superpotential becomes W =

X25M52, where M53 is the meson X51X12. Again we conclude that this DSB fractional

brane generates a metastable vacua with all pseudomoduli lifted.

4.2.3 The Y p,q family

Consider D3-branes at the real cones over the Y p,q Sasaki-Einstein manifolds [36 – 39],

whose field theory were determined in [8]. The theory admits a fractional brane [13] of

DSB kind, which namely breaks supersymmetry and lead to runaway behavior [15, 18].

The analysis of metastability upon addition of massive flavors for arbitrary Y p,q’s is much

more involved than previous examples. Already the description of the field theory on

the fractional brane is complicated. Even for the simpler cases of Y p,q and Y p,p−1 the

superpotential contains many terms. In this section we do not provide a general proof

of metastability, but rather consider the more modest aim of showing that all directions

related to the runaway behavior in the absence of flavors are stabilized by the addition of

flavors. We expect that this will guarantee full metastability, since the fields not involved

in our analysis parametrize directions orthogonal to the runaway at infinity.

The dimer for Y p,q is shown in figure 12 and consists of a column of n hexagons and 2m

quadrilaterals which are just halved hexagons [18]. The labels (n,m) are related to (p, q)

by

n = 2q ; m = p − q (4.10)
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Figure 12: The generic dimer for Y p,q,

from [18].
Figure 13: The dimer for Y p,1.

The Y p,1 case. The dimer for the theory on the DSB fractional brane in the Y p,1 case is

shown in figure 13, a periodic array of a column of two full hexagons, followed by p− 1 cut

hexagons (the shaded quadrilateral has Nc = 0). As shown in [18], the top quadrilateral

which has Nf < Nc, and induces the ADS superpotential triggering the runaway. The

relevant part of the dimer is shown in figure 14, where V1 and V2 are the fields that run
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gauge groups

to infinity [18]. This node will lead to supersymmetry breaking by the rank condition in

the dual. It is in the free magnetic phase for M + 1 ≤ Nf,1 < pM + M
2 . The piece of the

superpotential involving the V1 and V2 terms is

W = Y U2V2 − Y U1V1. (4.11)

In the dual theory, the dual superpotential makes the fields massive. Hence, the theory

has a metastable vacua where the runaway fields are stabilized.

The Y p,p−1 case. The analysis for Y p,p−1 is similar but in this case it is the bottom

quadrilateral which has the highest rank and thus gives the ADS superpotential [18]. The

relevant part of the dimer is shown in figure 15, and the runaway direction is described

by the fields V1 and V2. Upon addition of Nf,1 flavors, the relevant node in the in the

free magnetic phase for M + 1 ≤ Nf,1 < pM + M
2 Considering the superpotential, it is

straightforward to show that the runaway fields become massive. Complementing this with

our analysis in previous section, we conclude that the theory has a metastable vacua where

the runaway fields are stabilized.

We have thus shown that we can obtain metastable vacua for fractional branes at

cones over the Y p,1 and Y p,p−1 geometries. Although there is no obvious generalization
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V

U2

U2

U1

V1

(p−1)M

Y

Y

(2p−1)M

(p−2)M

(2p−2)M

(2p−2)M

2

Figure 15: Bottom part of the dimer for Y p,p−1. The hexagons are labeled by the ranks of the

respective gauge groups

for arbitrary Y p,q’s, our results strongly suggest that the existence of metastable vacua

extends to the complete family.

5. Conclusions and outlook

The present work introduces techniques and computations which suggest that the existence

of metastable supersymmetry breaking vacua is a general property of quiver gauge theories

on DSB fractional branes, namely fractional branes associated to obstructed complex de-

formations. It is very satisfactory to verify the correlation between a non-trivial dynamical

property in gauge theories and a geometric property in their string theory realization. The

existence of such correlation fits nicely with the remarkable properties of gauge theories on

D-branes at singularities, and the gauge/gravity correspondence for fractional branes.

Beyond the fact that our arguments do not constitute a general proof, our analysis has

left a number of interesting open questions. In fact, as we have mentioned, all theories on

DSB fractional branes contain one or several fields which do not appear in the superpoten-

tial. We expect the presence of these fields to have a direct physical interpretation, which
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c) d)

a) b)

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ

ϕ
φ2

φ1
φ

ψ2

ψ
ψ1

Figure 16: Feynman diagrams contributing to the one-loop two point function. The dashed line

denotes bosons and the solid one fermions.

has not been uncovered hitherto. It would be interesting to find a natural explanation for

them.

Finally, a possible extension of our results concerns D-branes at orientifold singularities,

which can lead to supersymmetry breaking and runaway as in [27]. Interestingly, in this

case the field theory analysis is more challenging, since they would require Seiberg dualities

of gauge factors with matter in two-index tensors. It is very possible that the string theory

realization, and the geometry of the singularity provide a much more powerful tool to study

the system.

Overall, we expect other surprises and interesting relations to come up from further

study of D-branes at singularities.
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A. Technical details about the calculation via Feynman diagrams

A.1 The basic amplitudes

In the main text we are interested in computing two point functions for the pseudomoduli

at one loop, and in section 2.2 also tadpole diagrams. There are just a few kinds of

diagrams entering in the calculation, which we will present now for the two-point function,

see figure 16. The (real) bosonic fields are denoted by φi and the (Weyl) fermions by ψi.

The pseudomodulus we are interested in is denoted by ϕ.
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Bosonic contributions. These come from two terms in the Lagrangian. First there is

a diagram coming from terms of the form (figure 16b):

L = . . . + λϕ2φ2 − 1

2
m2φ2, (A.1)

giving an amplitude (we will be using dimensional regularization)

iM =
−2iλ

(4π)2
m2

(

1

ǫ
− γ + 1 + log 4π − log m2

)

. (A.2)

The other contribution comes from the diagram in figure 16a:

L = . . . + λϕφ1φ2 −
1

2
m2

1φ
2
1 −

1

2
m2

2φ
2
2, (A.3)

which contributes to the two point function with an amplitude:

iM =
iλ2

(4π)2

(

1

ǫ
− γ + log 4π −

∫ 1

0
dx log ∆

)

, (A.4)

where here and in the following we denote ∆ ≡ xm2
1 + (1 − x)m2

2.

Fermionic contributions. The relevant vertices here are again of two possible kinds, one

of which is nonrenormalizable. The cubic interaction comes from terms in the Lagrangian

given by the diagram in figure 16c:

L = . . . + ϕ(aψ1ψ2 + a∗ψ̄1ψ̄2) +
1

2
m1(ψ

2
1 + ψ̄2

1) +
1

2
m2(ψ

2
2 + ψ̄2

2). (A.5)

We are assuming real masses for the fermions here, in the configurations we study this

can always be achieved by an appropriate field redefinition. The contribution from such

vertices is given by:

iM =

∫ 1

0
dx

{−2im1m2

(4π)2
(a2 + (a2)∗)

(

1

ǫ
− γ + log 4π − log ∆

)

(A.6)

− 8i|a|2
(4π)2

∆

(

1

ǫ
− γ + log 4π +

1

2
− log ∆

)}

.

The other fermionic contribution, which one does not need as long as one is dealing

with renormalizable interactions only (but we will need in the main text when analyzing

the pseudomodulus θ), is given by terms in the Lagrangian of the form (figure 16d):

L = . . . + λϕ2(ψ2 + ψ̄2) +
1

2
m(ψ2 + ψ̄2), (A.7)

which contributes to the total amplitude with:

iM =
8λmi

(4π)2
m2

(

1

ǫ
− γ + 1 + log 4π − log m2

)

. (A.8)
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A.2 The basic superpotentials

The previous amplitudes are the basic ingredients entering the computation, but in general

the number of diagrams contributing to the two point amplitudes is quite big, so calculating

all the contributions by hand can get quite involved in particular examples.6 Happily, one

finds that complicated models (such as dP1 or dP2, studied in the main text) reduce to

performing the analysis for only two different superpotentials, which we analyze in this

section.

The symmetric case. We want to study in this section a superpotential of the form:

W = h(Xφ1φ2 + µφ1φ3 + µφ2φ4 − µ2X). (A.9)

This model is a close cousin of the basic O’Raifeartaigh model. We are interested in the

one loop contribution to the two point function of X, which is massless at tree level.

From the (F-term) bosonic potential one obtains the following terms entering the one

loop computation:

V =
[

|hXφ2|2 + |h|2µ(Xφ2φ
∗
3 + X∗φ∗

2φ3) + |h|2µ(Xφ1φ
∗
4 + X∗φ∗

1φ4)
]

+|h|2µ2(φ1φ2 + φ∗
1φ

∗
2) +

4
∑

i=1

|h|2µ2|φi|2 (A.10)

In order to do the computation it is useful to diagonalize the mass matrix by intro-

ducing φ+ and φ− such that:

φ1 =
1√
2
(φ+ + iφ−) φ2 =

1√
2
(φ+ − iφ−) (A.11)

and φa, φb such that:

φ∗
3 =

1√
2
(φa + iφb) φ∗

4 =
1√
2
(φa − iφb). (A.12)

With these redefinitions the bosonic scalar potential decouples into identical φ+ and φ−
sectors, giving two decoupled copies of:

V = |h|2|X|2|φ+|2 + |h|2µ2(|φ+|2 + |φa|2)

+|h|2µ(Xφ+φa + X∗φ∗
+φ∗

a) −
|h|2µ2

2

(

φ2
+ + (φ2

+)∗
)

. (A.13)

Calculating the amplitude consists simply of constructing the (very few) two point diagrams

from the potential above and plugging the formulas above for each diagram (the fermionic

part is even simpler in this case). The final answer is that in this model the one loop

correction to the mass squared of X is given by:

δm2
X =

|h4|µ2

8π2
(log 4 − 1). (A.14)

6The authors wrote the computer program in http://cern.ch/inaki/pm.tar.gz which helped greatly

in the process of computing the given amplitudes for the relevant models.
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The generalized asymmetric case. The next case is slightly more complicated, but

will suffice to analyze completely all the models we encounter. We will be interested in the

one loop contribution to the mass of the pseudomoduli Y in a theory with superpotential:

W = h(Xφ1φ2 + µφ1φ3 + µφ2φ4 − µ2X) + k(rY φ1φ5 + µφ5φ7), (A.15)

with k and r arbitrary complex numbers. The procedure is straightforward as above, so

we will just quote the result. We obtain an amplitude given by:

iM =
−i

(4π)2
|h2rµ|2C

( |k|2
|h|2

)

, (A.16)

where we have defined C(t) as:

C(t) =
t

2 − t

(

log 4 − t

t − 1
log t

)

. (A.17)

Note that this is a positive definite function, meaning that the one loop correction to the

mass is always positive, and the pseudomoduli get stabilized for any (nonzero) value of the

parameters. Also note that the limit of vanishing t with |r|2t fixed (i.e., vanishing masses

for φ5 and φ7, but nonvanishing coupling of Y to the supersymmetry breaking sector) gives

a nonvanishing contribution to the mass of Y .

B. D7-branes in the Riemann surface

The gauge theory of D3-branes at toric singularities can be encoded in a dimer diagram [40 –

44]. This corresponds to a bi-partite tiling of T 2, where faces correspond to gauge groups,

edges correspond to bi-fundamentals, and nodes correspond to superpotential terms. As

an example, the dimer diagram of D3-branes on the cone over dP2 is shown in figure 17.

As shown in [43], D3-branes on a toric singularity are mirror to D6-branes on intersecting

3-cycles in a geometry given by a fibration of a Riemann surface Σ with punctures. This

Riemann surface is just a thickening of the web diagram of the toric singularity [45 – 47],

with punctures associated to external legs of the web diagram. The mirror D6-branes

wrap non-trivial 1-cycles on this Riemann surface, with their intersections giving rise to bi-

fundamental chiral multiplets, and superpotential terms arising from closed discs bounded

by the D6-branes. In [19], it was shown that D7-branes passing through the singular point

can be described in the mirror Riemann surface Σ by non-compact 1-cycles which come

from infinity at one puncture and go to infinity at another. Figure 18 shows the 1-cycles

corresponding to some D3- and D7-branes in the Riemann surface in the geometry mirror

to the complex cone over dP2. A D7-brane leads to flavors for the two D3-brane gauge

factors whose 1-cycles are intersected by the D7-brane 1-cycle, and there is a cubic coupling

among the three fields (related to the disk bounded by the three 1-cycles in the Riemann

surface).

As stated in section 4, given a gauge theory of D3-branes at a toric singularity, we

introduce flavors for some of the gauge factors in a specific way. We pick a term in the

superpotential, and we introduce flavors for all the involved gauge factors, and coupling to
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Figure 17: Dimer diagram for D3-branes at a dP2 singularity.
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Figure 18: Riemann surface in the geometry mirror to the complex cone over dP2, shown as a

tiling of a T 2 with punctures (denoted by capital letters). The figure shows the non-compact 1-

cycles extending between punctures, corresponding to D7-branes, and a piece of the 1-cycles that

correspond to the mirror of the D3-branes.

all the involved bifundamental multiplets. For example, the quiver with flavors for the dP2

theory is shown in figure 19.

On the Riemann surface, this procedure amounts to picking a node and introducing

D7-branes crossing all the edges ending on the node, see figure 18. In this example we

obtain the superpotential terms

Wflavor = λ′(Q1iQ̃i3Y31 + Q3jQ̃j5X53 + Q5kQ̃k1X15) (B.1)

In addition we introduce mass terms

Wmass = m1Q1iQ̃k1 + m2Q3jQ̃i3 + m5Q5kQ̃j5 (B.2)
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Q1i Qi3

Q3j

Qj5

Q5k

Qk1

Figure 19: Quiver for the dP2 theory with M fractional branes and flavors.

This procedure is completely general and applies to all gauge theories for branes at toric

singularities.7

C. Detailed proof of section 4

Recall that in section 4 we considered the illustrative example of the gauge theory given

by the quiver in figure 20. Since node 2 is the one we wish to dualize, the only relevant

part of the diagram is shown in figure 21. We show the Seiberg dual in figure 22. The

above choice of D7-branes, which we showed in appendix B can be applied to arbitrary

toric singularities, gives us the superpotential terms

Wflavor = λ′ (X32Q2bQb3 + X21Q1aQa2 + X14Q4dQd1 + Y43Q3cQc4 )

Wmass = m2Qa2Q2b + m3Qb3Q3c + m4Qc4Q4d + m1Qd1Q1a (C.1)

Taking the Seiberg dual of node 2 gives

Wflavor dual = λ′ (S1
3bQb3 + R1

a1Q1a + X14Q4dQd1 + Y43Q3cQc4 )

Wmass dual = m2Xab + m3Qb3Q3c + m4Qc4Q4d + m1Qd1Q1a

Wmesons = h (XabQ̃b2Q̃2a + R1
a1X̃12Q̃2a + R2

a1Ỹ12Q̃2a

+ S1
3bQ̃b2X̃23 + S2

3bQ̃b2Ỹ23 + S3
3bQ̃b2Z̃23

+ M1
31X̃12X̃23 + M2

31X̃12Ỹ23 + M3
31X̃12Z̃23

+ M4
31Ỹ12X̃23 + M5

31Ỹ12Ỹ23 + M6
31Ỹ12Z̃23 ) (C.2)

where we have not included the original superpotential. The crucial point is that the

underlined terms appear for any quiver gauge theory with flavors introduced as described

7This procedure does not apply if the superpotential (regarded as a loop in the quiver) passes twice

through the node which is eventually dualized in the derivation of the metastable vacua. However we have

found no example of this for any DSB fractional branes.
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b

c

d

X21 Y21

X32

Y32 Z32

X14

X43 Y43

Q1a

Qa2

Q2b Qb3

Q3c

Qc4

Q4dQd1

Figure 20: Quiver diagram with flavors. White nodes denote flavor groups

2

a

b

1

3

X21 Y21

X32

Y32 Z32Qa2

Q2b

Figure 21: Relevant part of quiver before Seiberg duality.

in appendix B. As described in the main text, supersymmetry is broken by the rank

condition due to the F-term of the dual meson associated to the massive flavors. Our

vacuum ansatz is (we take Nf = 2 and Nc = 1 for simplicity; this does not affect our

conclusions)

Q̃b2 =

(

µ1Nc

0

)

; Q̃2a = (µ1Nc ; 0) (C.3)

with all other vevs set to zero. We parametrize the perturbations around this minimum as

Q̃b2 =

(

µ + φ1

φ2

)

; Q̃2a = (µ + φ3 ; φ4) ; Xab =

(

X00 X01

X10 X11

)

(C.4)
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a
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32

X̃12 Ỹ12
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Ỹ23Z̃23

Q̃b2

Q̃2a

Xab

R1

R2

S1S
2
S3

M1, . . . ,M6

Figure 22: Relevant part of the quiver after Seiberg duality on node 2.

and the underlined terms give

hXabQ̃b2Q̃2a − hµ2Xab = hX11 φ2 φ4 − hµ2X11 + hµ φ2 X01 + hµ φ4 X10

+hµ φ1 X00 + hµ φ3 X00 + hφ1 φ3X00 + hφ2 φ3X01

+hφ1 φ4X10 (C.5)

It is important to note that all the fields in (C.4) will have quadratic couplings only in

the underlined term (C.5). Thus, one can safely study this term, and the conclusions are

independent of the other terms in the superpotential. Diagonalizing (C.5) gives

hXabQ̃b2Q̃2a − hµ2Xab = hX11 φ2 φ4 − hµ2X11 + hµ φ2 X01 + hµ φ4 X10

+
√

2hµ φ+ X00 +
h

2
φ2

+ X00 −
h

2
φ2
− X00

+
h√
2

(ξ+ − ξ−)φ2X01 +
h√
2

(ξ+ + ξ−)φ4X10 (C.6)

where

ξ+ =
1√
2

(φ1 + φ3) ; ξ− =
1√
2

(φ1 − φ3) (C.7)

This term is similar to the generalized asymmetric case studied in appendix A.2 with

X11 → X ; φ4 → φ1 ; φ2 → φ2 ; X10 → φ3 ; X01 → φ4 (C.8)

So here X11 is the linear term that breaks supersymmetry, and φ2, φ4 are the broken

supersymmetry fields. In (C.6), the only massless fields at tree-level are X11 and ξ−.

Comparing to the ISS case in section 2.1 shows that Im ξ− is a Goldstone boson and

X11, Re ξ− get mass at tree-level. As for φ2 and φ4, setting ρ+ = 1√
2
(φ2 + φ4) and

ρ− = 1√
2
(φ2 − φ4) gives us Re(ρ+) and Im (ρ−) massless and the rest massive. Following

the discussion in section 2.1, Re(ρ+) and Im (ρ−) are just the Goldstone bosons of the
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Figure 23: Quiver after Seiberg duality on node 2.

broken SU(Nf ) symmetry.8 We have thus shown that the dualized flavors (e.g. Q̃b2, Q̃2a)

and the meson with two flavor indices (e.g. Xab) get mass at tree-level or at 1-loop unless

they are Goldstone bosons. Now, we need to verify that this is the case for the remaining

fields.

The Seiberg dual of the original quiver diagram is shown in figure 23. The dualized

bi-fundamentals come in two classes. The first are the ones that initially (before dualizing)

had cubic flavor couplings, there will always be only two of those (e.g. X̃12, X̃23). The

second are those that did not initially have cubic couplings to flavors, there is an arbitrary

number of those (e.g. Ỹ12, Ỹ23, Z̃23). figure 24 shows the relevant part of the quiver for the

first class.

Recalling the superpotential terms (C.2), there are several possible sources of tree-level

masses. For instance, these can arise in Wflavor dual and Wmass dual. Also, remembering

our assignation of vevs in (C.3), tree-level masses can also arise in Wmesons from cubic

couplings involving the broken supersymmetry fields (e.g. Q̃b2, Q̃2a). The first class of

bi-fundamentals (e.g. X̃12, X̃23) only appear in Wmesons coupled to their respective mesons

(e.g. R1, S1). In turn these mesons will appear in quadratic terms in Wflavor dual coupled

to flavors (e.g. S1
3bQb3 and R1

a1Q1a), and these flavors each appear in one term in Wmass.

Thus there are two sets of three terms which are coupled at tree-level and which always

couple in the same way. Consider for instance the term

λ′ S1
3bQb3 + m3Qb3Q3c + hS1

3bQ̃b2X̃23 = (C.9)

= λ′(S1 S2)

(

B1

B2

)

+ m1(C1 C2)

(

B1

B2

)

+ h(S1 S2)

(

µ + φ1

φ2

)

X̃23

= λ′(S1B1 + S2B2) + m1(B1C1 + B2C2) + hµS1X̃23 + hS1φ1X̃23 + hS2φ2X̃23

8In the case where the flavor group is SU(2), these Goldstone bosons are associated to the generators tx

and ty.
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Figure 24: Relevant part of dual quiver for first class of bi-fundamentals.
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Ỹ23

Z̃23

Q̃b2

Q̃2a

R2

S2S
3

Qc4

Q4d

Figure 25: Relevant part of dual quiver for second class of bi-fundamentals.

where Si, Bi, Ci and X̃23 are the perturbations around the minimum. Diagonalizing (which

can be done analytically for any values of the couplings), we get that all terms except one

get tree-level masses, the massless field being:

Y = m1S2 − λ′C2 (C.10)

This massless field has a cubic coupling to φ2 X̃23 and gets mass at 1-loop since φ2 is a

broken supersymmetry field, as described in appendix A.2.

Figure 25 shows the relevant part of the quiver for the second class of bi-fundamentals

(i.e. those that are dualized but do not have cubic flavor couplings).

These fields and their mesons only appear in one term, so will always couple in the

same way. Taking as an example

hR2
a1Ỹ12Q̃2a =

(

R1

R2

)

Ỹ12 (µ + φ3 ; φ4)

= µR1 Ỹ12 + R1 φ3 Ỹ12 + R2 φ4 Ỹ12 (C.11)
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This shows that R1 and Ỹ12 get tree-level masses and R2 gets a mass at 1-loop since it

couples to the broken supersymmetry field φ4. The only remaining fields are flavors like

Qc4, Q4d, which do not transform in a gauge group adjacent to the dualized node (i.e. not

adjacent in the quiver loop corresponding to the superpotential term used to introduce

flavors). These are directly massive from the tree-level Wmass term.

So, as stated, all fields except those that appear in the original superpotential (i.e.

mesons with gauge indices and bi-fundamentals which are not dualized) get masses either

at tree-level or at one-loop. So we only need to check the dualized original superpotential

to see if we have a metastable vacua.
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